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Abstract. We give the results for all the one-loop propagators, including finite parts, in the Coulomb
gauge. In the finite parts we find new non-rational functions in addition to the single logarithms of the
Feynman gauge. Of course, the two gauges must agree for any gauge invariant function.

1 Introduction

The non-covariant axial and Coulomb gauges have a more
direct physical interpretation than the covariant gauges,
because their propagators are closely related to the po-
larization states of real spin-1 particles. The relevant di-
agrams in the Coulomb gauge are not plagued by ghosts.
Also the time-time component of the gluon propagator
provides a long-range confining force [1,2]. The Hamilto-
nian for non-Abelian gauge theory in the Coulomb gauge
has been known for some time in its continuum version
[3]. The Coulomb gauge in the Hamiltonian formalism is
manifestly unitary. The main point in its favor is that
problems concerned with the definition of the axial gauge
integrals like

L1
J i W

do not appear in the definition of integrals like

/d‘%% . (2)

in the Coulomb gauge. However, there are disadvantages.
The naive Coulomb gauge Feynman rules in non-Abelian
gauge theory give rise to ambiguous integrals, in addition
to the usual ultraviolet divergences [4]. At one loop order
and above there are integrals like

/ d3P / dpo Po < 1 (3)
@ | G- PP+ (P-KP

There is no regularization procedure for the energy diver-
gence in pg within the standard dimensional regulariza-
tion scheme. This integral and similar more complicated
divergences in higher order diagrams have been the sub-
ject of study [5,6], where systematic cancellations have
been found. However, no general proof exists that controls
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all divergences [7]. Formally such integrals are assigned
the value zero. The Coulomb gauge has been extensively
studied in the phase space formalism by Zwanziger [8] in
the Euclidean space. The ultraviolet divergent parts of
the proper two-point functions have been calculated and
found to observe the Ward identities. In addition, a more
powerful Ward identity holds in the Coulomb gauge than
is available in covariant gauges. In this paper we give the
results for the complete propagator to order g? including
finite parts in Minkowski space.

2 The Coulomb gauge
in the phase-space formalism

We use the phase-space formalism in order to avoid the
ambiguous integrals like (3). Let the generating functional
of the Green’s functions be

Z(j,J)
= / d[f1d[A][T* A, + 5 fo] exp {—i / d4xL], (4)

where J, j are sources, L the Lagrangian density and f
and A are the fields [9];

1a apv ]'aua
LZ*Z [LVfH +§fﬂFw) (5)

and

be gb
Fi, = 0uA7 — 0, A, — gf " A} A} (6)
Greek indices run from 0 to 3 and Latin indices denote
spatial dimensions (i = 1,2,3); a, b, ¢, are color indices.
Instead of setting the source j to zero as in the Lagrangian
formalism, we keep some components of j. We write out
L as

1 o 1 a 1 a a a a
L:_Z( ij)2+§(f0i)2+§ i Fi — foioi (™
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and set j;; = 0 in order to perform the Feynman integral
over f;;. We denote fo; = E;. The Lagrangian becomes

1 a 1 a a a
LZ_;(FU)2+§(E¢)2—E1' Fo, (8)
where
B Fg, = EL 00 AL — 0, A5 — gf**° AL AS). 9)

The field FE; is the momentum conjugate to A;. We have
L expressed in terms of momenta and linear terms in the
derivatives. It is first order in the time derivatives. Adding
the gauge fixing term

L o4,

2a (10)

we can deduce the propagators from the quadratic part
of the Lagrangian. The propagator matrix is the inverse
of the matrix of these quadratic parts and is given by the
following 7x 7 matrix, whose rows and columns are labeled
by Ay, Az, Az ; Ag; By, B, E3:

A; Ao E,
Ai — ij/k‘Z + OéLij/Kz Oék}oKi/(K2>2 —ik‘()T;n/k’2
Ao akol/(K?)? /K2 +ak?/(K?)? K,/ K>
En  —ikoTy;/k? 1K,/ K? T K2/ 12
where

Ej Eéij_Lij; LijEKin/KQ,

E* = k2 — K2 (11)

The Coulomb gauge propagators are obtained by setting
a=0.

3 The proper two-point functions

The method of evaluation of Coulomb gauge integrals is
explained in Appendix A. Here we list the results. The
constants used throughout this paper are

e=4—d, (12)
where d is the dimension of space-time and the coupling
parameter is

32
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C(Sab = @CG&;U (13)

Fig. 1. The transverse gluon self-energy graph. The dashed
line is the transverse gluon A;, the dotted line represents the
instantaneous Coulomb field Ag and the continuous line is the
FE; field conjugate to the transverse field A;
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The transverse gluon two-point function

There are two non-vanishing graphs contributing to the
transverse gluon propagator. The graph shown in Fig. 1
gives

A A K? e 77
it () (35) e (1 57)
12, 16
X {15K 61-]- — 15K2K]+156K2KJ} (14)

The graph in Fig. 2 contributes

AiAj

Iy = c(MK,K; + NK?5;;), (15)

where
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Fig. 2. The transverse gluon self-energy graph. The dashed
line is the transverse gluon field A;
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The non-rational structure D which appears in the re-
sults for the proper two-point functions is in the integral

form
_ 1
D = / dx ’
—x( K 2

In the region kg > K

In(1 — ). (18)

—in)

We have in the region ky > K

D_ 1 Liy ko — K +1in L, ko—l—K—?n
k’oK ko‘i’K*l ko*K‘i’lT}
ko+ K —in k? +in
1 1
+nk0—K+inxn K?
ko + K —in
ko—K—Fin '

—inln

In the region K > kg

We have in the region K > kg

1 K—ky—in . K+ ky—in
D = L — | — L _
koK {12(K+/€o—i7l> 12(K ko — 177)

K+ ky—in —k? —in
+ankoi77X1n< k:(z)
. K +ky—in
Inp .~
+mnK—k‘0—in}
2 . ko . ko
— —— |L — —L
koK { 12( K—in) ” (K—in)}
in K?
1 20
TRk (SR =) (20)
where
1n(1 —
Liz(x):f/ =2y, (21)
0 z

is the Spence function and kg and K are the lengths of
the respective vectors. The two expressions for D in (19)
and (20) are connected as analytic continuations of each
other with the relation (B1).

The A; A transition

The whole contribution to the A; A¢ transition to order g2
comes from the graph in Fig. 3a. We have

it — ckoK; x Z, (22)
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Fig. 3. a The A; Ao two-point function. The dotted line is the
instantaneous Coulomb field Ao, the dashed line represents the
transverse field A; and the solid line is the conjugate field E;.
b The A; Ao two-point function. The graph is suppressed as an
energy divergence
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The graph shown in Fig. 3b contains integrals like the one
in (3). Formally such integrals are assigned the value zero.

The time-time component of the two-point function

Two graphs contribute to the AgAg function. The graph
shown in Fig. 4a gives
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Fig. 4. a The time-time component of the gluon self-energy
to order g2. The dotted lines represent the instantaneous
Coulomb field Ag. The continuous line is the E; field conjugate
to the transverse field A;. The propagators inside the loop are
the F;A; transitions specific to the Coulomb gauge. b Self-
energy graph to order g2. The dotted line is the Ao field, the
dashed line is the transverse propagator and the solid line is
the E; E; propagator
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Fig. 5. The transition between the transverse gluon field and
its conjugate field E;

The graph in Fig. 4b contributes
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We can verify that the complete proper two-point func-
tions satisfy the 't Hooft identity [10]

k2rA0Ao ok KA 4 KK T4 =0 (26)
and the stronger Zwanziger identity [8]
ko A0A0 = J; iAo, (27)

The remaining graphs contain the conjugate field F; as
the external leg.

E;Aj; graph

The graph in Fig. 5 vanishes as the energy diverges.

E;Aq graph

The graph in Fig. 6 gives
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Fig. 6. The transition between the Coulomb field Ag and the
conjugate field E;
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Fig. 7. The conjugate field self-energy

E;E; graph

The graph in Fig. 7 contributes
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4 The gluon propagator to order g

4 KK,
e

We form the 7 x 7 matrix of free and order g proper two-
point functions. The inverse of this matrix gives the gluon
propagator to order g2.

The ApAg propagator

The time-time component of the gluon propagator to or-
der g2 is [11]

DAoAo — L[FAOAO + iKnFAoEn]

K4
ik

i 1 m[FEmAO +iKnFEMEn]7

= (30)

or explicitly

DA()A()
1 5 (—k? —in)

_ 2\ —2 € 2 9.2
= ¢(K?) x{gF(2)K S

K? 1
- 2K21nﬁ+ §k2(k2+2k3) x D
]f2 k0+K—lT]
k2 4+ 2k2)1
i T 2ko) o — K +in
K2
(—k? —in)
31

— (6k2 +2K?)In2 + 6k2 + 9K2} .

K2
(—k% —in)

+ X In

— 3k — K*)In

(31)

The ultraviolet divergent part of (31) gives the gauge in-
variant Coulomb field renormalization factor [12].

The A;A; propagator
The transverse gluon propagator to order g2 is

kg

1
AiAj _
D% o

AmAn
- ﬁTa’rnF Tnj -

Tum TFE0 T, (32)
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or explicitly
DAiAj
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5 The Slavnov—Taylor identity

Although ghosts are absent from the S-matrix elements
they are necessary to formulate the Slavnov—Taylor iden-
tities [13,14]. Diagramatically they are shown for the self-
energy in Fig. 8. Algebraically they are

kOFAOAJ _ KiFAiAj = <K26” — KZKJ)FCAZ (34)

The diagrams involving ghost—source vertices on the right-
hand side are shown in Fig.9a,b. The diagram in Fig.9a
vanishes as the energy divergence in py. The diagram in
Fig.9b contributes

4 € 2 13e
Kid-Sqoer(S) (2420 (35
8 {3+ (2)(3+9>}()
so the identity is satisfied trivially as implied by (26) and
(27).

N

Fig. 8. The Slavnov—Taylor identity for self-energy graphs.
The wavy lines stand for Yang—Mills particles and double lines
for ghosts. The symbol on the left wavy line stands for the
replacement of a polarization vector e, (k) by k, and k* need
not be zero. The cross denotes the action of the tensor (ku k., —
k?6,.). The circle represents the set of all relevant Feynman
graphs
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6 Discussion

We have checked the consistency of the Coulomb gauge
to order g2 including finite parts. The time-time compo-
nent of the gluon propagator in the Coulomb gauge is be-
lieved to provide a long-range confining force. There are
two interesting limits of (31). In the Zwanziger picture [8]
g% Dqo gives the instantaneous part Vz(R), which is called
the color-Coulomb potential. (Here Dy is the time-time
component of the gluon propagator.) The instantaneous
color-Coulomb potential Vz(R) at large R may serve as
an order parameter. We have

Vz(R) .

Kcou = lim (36)
R—o0

A non-zero value of Koy would be the signal for color

confinement. The potential is separated out in momentum

space by

Vz(K) = lim g2DA0A0(k0 K),

ko—o0

(37)

where we have written Vz(K) for the Fourier transform
of Vz(R). The limit ko — oo of (31) is

lim D44 (kg, K)

ko— o0
c 11 1. K?
—w{xﬂﬁ—3m2‘m
28 103 K
7—1 2+ — —2In 38
P (39)

and it is not independent of ky. There appears to be a
difference in the dominant term in (38) and (37) of Cuc-
chieri and Zwanziger [15]. This difference arises because
of the statement near the end of AppendixB in [15] that
I, is finite, and “as a result” Iy vanishes in the limit
ko — oo. However, the finiteness of Io does not imply
anything about the behavior as ky — oco. In fact, on cal-
culating I, we find that the dominant term as ky — oo is
—4/31In(k3/K?). With this value, there is no contradiction
with (38) in this paper.

Although the limit as ko — oo is not finite, Cucchieri
and Zwanziger [15] have argued that an unambiguous in-
stantaneous part may be defined by using renormalization
group arguments.

The limit kg — 0 is naturally related to the definition
of the quark—antiquark potential. It follows from consid-
ering a rectangular Wilson loop with sides of length 7" in

a b

Fig. 9. a Diagram with an open ghost line. The source vy, of the
E,, field has the vertex g f®*°E®%C®v,. The ghost propagator is
% and it is represented with the double line. b Diagram with
an open ghost line. The source uj of the transverse gluon field
has the vertex gf®*°8,;
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the time direction (where T — oo) and L in the space
direction. In the Coulomb gauge the main contribution
comes from the Dgg component of the propagator (where
ko — 0) attached to the two time-like sides. The kg — 0
limit of (31) is

lim D404 (kg K)

k0—>0
c (11 € 11, K? 31
-5 {8 - S}
K2 { 3 \2 "E T } (39)
leading to the quark—antiquark potential
V(R) = —2n%g; (11) (40)
1 g°Cq [31 11
—q1 — 4+ — —1
XR{+16n2[9+37+ n(uR)}}

where v is Euler’s constant, and ¢, (u) is the running cou-
pling constant. If we assume the relation

Rxp=1, (41)

gr(1t) becomes R dependent. We suppose that the exact
Gr (%) tends to zero as R — 0 and gr( ) — oo for
R — oc.
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Appendix A

We use the following two basic integrals for the evaluation
of the Coulomb gauge integrals:

1
A= d4—e .
/ Pprrin (k

1 1
= fin/ dy/d?’*fp
2 0

1
—p)?+in

x {P? —2P. Ky — yk* + y*k§ —in} 2, (Al)
_ Po
B = /d4 “p - -
(p? +in)[(k — p)* + in]
1 1
= —ink / ydy / 3P
2 0
x {P? 2P Ky —yk® + y°k3 —in} 2. (A2)
As an example we evaluate the integral
—« Do 1 P, P;
X = [d* . =L (A3
! / Prvin —pPtim P2 (43)
Applying (A2)
L. ' s—ep il
Xij:ilnko/o ydy/d P?
1
X (A4)

[P2 —2P - Ky — yk? + y2k2 —in]3
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Combining the denominators with the Feynman parame-
ter x, we have

1 1
Xij = ikom2 I’ (5>/ dxm%/ ydy/dgiEP
2) Jo 0

Pin
8 A5
[P2 — 2P K;Ey — l'yk'Q + y2xk2 IUZE]% ( )

Now it is easy to perform the d3~¢P integration and the
integration over the parameter y giving X;; in the integral
form:

Xy,
e (3w
+ <4115ij B ) {/ dx 2 —x(K?—in)
+’“2/ Wz x(ié e (Iik(l = ?)}
1 1
+ KKIQ(J k2 {2/0 dmm
: !
+ [ e
1 1 _ 2
4 [ e }
where
C =ikom = . (A6)
The integrals in (A6) are
1 1
/o dmk% - fvaQ —in)
= —% + % n %, (A7)
1 1
| =t
- k;K? - QkolKS . Zz tglin’ (A8)
1 1
| =t
- 2K12k:4 B 4k211{2k2 B 8k31K3 . :2 J—r g J_r ;Z’(Ag)
/ dx — z(K? —1in)
201
y ’“/ - x(ié o
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Appendix B

The expressions for D in (19) for kg > K and in (20) for
K > kg ought to be connected by analytic continuation. It
is easy to see that this happens using the following relation
between the Spence functions:

Li z—1+1in L z+1—in
2 z+1—1in 2 r—1+in

1+x—i 1—2—i
Liy (M>_Lh (H?)
1l—x—1in 1+2—1in

+ 2Lis(—2 — in) — 2Liz(z + in)

1—1i 1-
~¢—lnlq+7¥17 X ln(x2) - inlnx + ?77
r—141in r—141in
+inIn(z?) 4+ % = 0, (B1)
where
“In(l —
Lb(x):——/n—ggzgjldz (B2)
0
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